Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Phys Med ; 74: 11-18, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32388465

RESUMO

PURPOSE: The primary goal was to evaluate local dose level for fluoroscopically guided invasive cardiac procedures in a high-volume activity catheterization laboratory, using automatic data registration with minimal impact on operator workload. The secondary goal was to highlight the relationship between dose indices and acquisition parameters, in order to establish an effective strategy for protocols optimization. METHODS: From September 2016 to December 2018, a dosimetric survey was conducted in the 2 rooms of the catheterization laboratory of our institution. Data collection burden was minimized using a commercial Radiation Dose Index Monitoring System (RDIMs) that analyzes dicom files automatically sent by the x-ray equipment. Data were combined with clinical information extracted from the HIS records reported by the interventional cardiologist. Local dose levels were established for different invasive cardiac procedures. RESULTS: A total of 3029 procedures performed for 2615 patients were analyzed. Median KAP were 21 Gycm2 for invasive coronary angiography (ICA) procedures, 61 Gycm2 for percutaneous coronary intervention (PCI) procedures, 59 Gycm2 for combined (ICA+PCI) procedures, 87 Gycm2 for structural heart intervention (TAVI) procedures. A significant dose reduction (51% for ICA procedures and 58% for PCI procedures) was observed when noise reduction acquisition techniques were applied. CONCLUSIONS: RDIMs are effective tools in the establishment of local dose level in interventional cardiology, as they mitigate the burden to collect and register extensive dosimetric data and exposure parameters. Systematic review of data support the multi-disciplinary team in the definition of an effective strategy for protocol management and dose optimization.


Assuntos
Fluoroscopia , Coração/diagnóstico por imagem , Doses de Radiação , Monitoramento de Radiação/normas , Cirurgia Assistida por Computador , Angiografia Coronária , Humanos , Intervenção Coronária Percutânea , Padrões de Referência
3.
J Appl Clin Med Phys ; 14(4): 4152, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23835380

RESUMO

The purpose of this study was to assess treatment margins in free-breathing irradiation of pancreatic cancer after bone alignment, and evaluate their impact on conformal radiotherapy. Fifteen patients with adenocarcinoma of the head of the pancreas underwent implantation of single fiducial marker. Intrafraction uncertainties were assessed on simulation four-dimensional computed tomography (4D CT) by calculating maximal intrafraction fiducial excursion (MIFE). In the first ten patients, after bony alignment, the position of the fiducial was identified on weekly acquired megavolt cone-beam CT (MV-CBCT). The interfraction residual uncertainties were estimated by measuring the fiducial displacements with respect to the position in the first session. Patient mean (pM) and patient standard deviation (pSD) of fiducial displacement, mean (µM) and standard deviation (µSD) of pM, and root-mean-square of pSD (σ(res)) were calculated. In the other five patients, MIFE was added to the residual component to obtain personalized margin. In these patients, conformal kidney sparing (CONKISS) irradiation was planned prescribing 54/45 Gy to PTV1/PTV2. The organ-at-risk limits were set according to current NCCN recommendation. No morbidity related to the fiducial marker implantation was recorded. In the first ten patients, along right-left, anterior-posterior, and inferior-superior directions, MIFE was variable (mean ± std = 0.24 ± 0.13 cm, 0.31 ± 0.14 cm, 0.83 ± 0.35 cm, respectively) and was at most 0.51, 0.53, and 1.56 cm, respectively. Along the same directions, µM were 0.09, -0.05, -0.05 cm, µSD were 0.30, 0.17, 0.33 cm, and σ(res) were 0.35, 0.26, and 0.30 cm, respectively. MIFE was not correlated with pM and pSD. In the five additional patients, it was possible to satisfy recommended dose limits, with the exception of slightly higher doses to small bowel. After bony alignment, the margins for target expansion can be obtained by adding personalized MIFE to the residual interfraction term. Using these margins, conformal free-breathing irradiation is a reliable option for the treatment of pancreatic cancer.


Assuntos
Adenocarcinoma/radioterapia , Neoplasias Pancreáticas/radioterapia , Radioterapia Conformacional/métodos , Adenocarcinoma/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico , Fracionamento da Dose de Radiação , Marcadores Fiduciais , Tomografia Computadorizada Quadridimensional , Humanos , Movimento (Física) , Órgãos em Risco , Neoplasias Pancreáticas/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador , Respiração
4.
Int J Radiat Oncol Biol Phys ; 84(1): e115-22, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22543199

RESUMO

PURPOSE: To test tangential and not-tangential hybrid intensity modulated radiation therapy (IMRT) for whole-breast irradiation. METHODS AND MATERIALS: Seventy-eight (36 right-, 42 left-) breast patients were randomly selected. Hybrid IMRT was performed by direct aperture optimization. A semiautomated method for planning hybrid IMRT was implemented using Pinnacle scripts. A plan optimization volume (POV), defined as the portion of the planning target volume covered by the open beams, was used as the target objective during inverse planning. Treatment goals were to prescribe a minimum dose of 47.5 Gy to greater than 90% of the POV and to minimize the POV and/or normal tissue receiving a dose greater than 107%. When treatment goals were not achieved by using a 4-field technique (2 conventional open plus 2 IMRT tangents), a 6-field technique was applied, adding 2 non tangential (anterior-oblique) IMRT beams. RESULTS: Using scripts, manual procedures were minimized (choice of optimal beam angle, setting monitor units for open tangentials, and POV definition). Treatment goals were achieved by using the 4-field technique in 61 of 78 (78%) patients. The 6-field technique was applied in the remaining 17 of 78 (22%) patients, allowing for significantly better achievement of goals, at the expense of an increase of low-dose (∼5 Gy) distribution in the contralateral tissue, heart, and lungs but with no significant increase of higher doses (∼20 Gy) in heart and lungs. The mean monitor unit contribution to IMRT beams was significantly greater (18.7% vs 9.9%) in the group of patients who required 6-field procedure. CONCLUSIONS: Because hybrid IMRT can be performed semiautomatically, it can be planned for a large number of patients with little impact on human or departmental resources, promoting it as the standard practice for whole-breast irradiation.


Assuntos
Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Mama/efeitos da radiação , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Coração/diagnóstico por imagem , Coração/efeitos da radiação , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Órgãos em Risco/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Radiografia , Dosagem Radioterapêutica , Carga Tumoral
5.
Strahlenther Onkol ; 187(8): 473-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21786110

RESUMO

PURPOSE: To test megavolt cone-beam CT (MV-CBCT) in order to evaluate setup errors in prostate radiotherapy. PATIENTS AND METHODS: The setup of 9 patients was verified weekly by electronic portal imaging (EPI) and MV-CBCT, both per-formed in the same treatment session. EPI were compared with digitally reconstructed radiographies (DRRs). MV-CBCTs were matched to simulation CTs by manual registration based on bone markers (BMR), by manual registration based on soft tissues (STR) - rectum, bladder, and seminal vesicles - and by automatic registration (AR) performed by a mutual information algorithm. Shifts were evaluated along the three main axes: anteroposterior (AP), craniocaudal (CC), and laterolateral (LL). Finally, in 4 additional patients showing intraprostatic calcifications, the calcification mismatch error was used to evaluate the three MV-CBCT matching methods. RESULTS: A total of 50 pairs of orthogonal EPIs and 50 MV-CBCTs were analyzed. Assuming an overall tolerance of 2 mm, no significant differences were observed comparing EPI vs BMR in any axis. A significant difference (p < 0.001) was observed along the AP axis comparing EPI vs AR and EPI vs STR. On the calcification data set (22 measures), the calcification mismatch along the AP direction was significantly lower (p < 0.05) after STR than after BMR or AR. CONCLUSION: Bone markers were not an effective surrogate of the target position and significant differences were observed comparing EPI or BMR vs STR, supporting the assessment of soft tissue position by MVCBs to verify and correct patient setup in prostate radiotherapy.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Neoplasias da Próstata/terapia , Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Alta Energia/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Calcinose/diagnóstico por imagem , Calcinose/radioterapia , Fracionamento da Dose de Radiação , Alemanha , Humanos , Masculino , Erros Médicos , Pessoa de Meia-Idade , Posicionamento do Paciente , Neoplasias da Próstata/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Design de Software
6.
Phys Med Biol ; 52(16): 5101-17, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17671356

RESUMO

This work reports the results of the application of a practical method to determine the in vivo dose at the isocenter point, D(iso), of brain thorax and pelvic treatments using a transit signal S(t). The use of a stable detector for the measurement of the signal S(t) (obtained by the x-ray beam transmitted through the patient) reduces many of the disadvantages associated with the use of solid-state detectors positioned on the patient as their periodic recalibration, and their positioning is time consuming. The method makes use of a set of correlation functions, obtained by the ratio between S(t) and the mid-plane dose value, D(m), in standard water-equivalent phantoms, both determined along the beam central axis. The in vivo measurement of D(iso) required the determination of the water-equivalent thickness of the patient along the beam central axis by the treatment planning system that uses the electron densities supplied by calibrated Hounsfield numbers of the computed tomography scanner. This way it is, therefore, possible to compare D(iso) with the stated doses, D(iso,TPS), generally used by the treatment planning system for the determination of the monitor units. The method was applied in five Italian centers that used beams of 6 MV, 10 MV, 15 MV x-rays and (60)Co gamma-rays. In particular, in four centers small ion-chambers were positioned below the patient and used for the S(t) measurement. In only one center, the S(t) signals were obtained directly by the central pixels of an EPID (electronic portal imaging device) equipped with commercial software that enabled its use as a stable detector. In the four centers where an ion-chamber was positioned on the EPID, 60 pelvic treatments were followed for two fields, an anterior-posterior or a posterior-anterior irradiation and a lateral-lateral irradiation. Moreover, ten brain tumors were checked for a lateral-lateral irradiation, and five lung tumors carried out with three irradiations with different gantry angles were followed. One center used the EPID as a detector for the S(t) measurement and five pelvic treatments with six fields (many with oblique incidence) were followed. These last results are reported together with those obtained in the same center during a pilot study on ten pelvic treatments carried out by four orthogonal fields. The tolerance/action levels for every radiotherapy fraction were 4% and 5% for the brain (symmetric inhomogeneities) and thorax/pelvic (asymmetric inhomogeneities) irradiations, respectively. This way the variations between the total measured and prescribed doses at the isocenter point in five fractions were well within 2% for the brain treatment, and 4% for thorax/pelvic treatments. Only 4 out of 90 patients needed new replanning, 2 patients of which needed a new CT scan.


Assuntos
Algoritmos , Neoplasias Encefálicas/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Neoplasias Torácicas/radioterapia , Humanos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...